Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear.
The given points are A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1).
∴ AB = PV of B - PV of A =(2^i+6^j+3^k)−(1^i+2^j+7^k)
=(2−1)^i+(6−2)^j+(3−7)^k=^i+4^j−4^k
Magnitude of AB, |AB|=√(1)2+(4)2+(−4)2=√1+16+16=√33
BC = PV of C - PV of B =(3^i+10^j−1^k)−(2^i+6^j+3^k)
=(3−2)^i+(10−6)^j+(−1−3)^k=^i+4^j−4^k
Magnitude of BC, |BC|=√(1)2+(4)2+(−4)2=√1+16+16=√33
AC = PV of C - PV of A =(3^i+10^j−1^k)−(1^i+2^j+7^k)
=(3−1)^i+(10−2)^j+(−1−7)^k=2^i+8^j−8^k
Magnitude of AC, |AC|=√22+82+(−8)2=√4+64+64=√132=2√33
=√33+√33
∴|AC|=|AB|+|BC|. Hence, the given points A,B and C are collinear.