Show that the points A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7) are collinear and find the ratio in which B divides AC.
The given points are A(1, -2, -8), B(5, 0, -2) and C(11, 3, 7)
AB = PV of B - PV of A =(5^i+0^j−2^k)−(^i−2^j−8^k)
=(5−1)^i+(0+2)^j+(−2+8)^k=4^i+2^j+6^k
|AB|=√42+22+62=√16+4+36=√56=2√14
BC = PV of C - PV of B =(11^i+3^j+7^k)−(5^i+0^j−2^k)
=(11−5)^i+(3−0)^j+(7+2)^k=6^i+3^j+9^k|BC|=√62+32+92=√36+9+81=√126=3√14
AC=PV of C - PV of A =(11^i+3^j+7^k)−(^i−2^j−8^k)
=(11−1)^i+(3+2)^j+(7+8)^k=10^i+5^j+15^k|AC|=√102+52+152=√100+25+225=√350=5√14∴|AC|=√102+52+152=√100+25+225=√350=5√14∴|AC|=|AB|+|BC|
Thus, the given points A, B and C are collinear
Let P be the point (on the line AC) which divides |AC| in the ratio λ:1, then PV of the point P =λ×PV of C+1×PV of Aλ+1
=1λ+1[λ(11^i+3^j+7^k)+1(^i−2^j−8^k)]=(11λ+1λ+1)^i+(3λ−2λ+1)^j+(7λ−8λ+1)^k
B lies on line AC, i.e., B is collinear with A and C, if P = B for a unique λ
⇒(11λ+1λ+1)^i+(3λ−2λ+1)^j+(7λ−8λ+1)^k=5^i+0^j−2^k⇒11λ+1λ+1=5,3λ−2λ+1=0 and 7λ−8λ+1=−2⇒11λ+1=5λ+5,3λ=2,7λ−8=−2λ−2⇒6λ=4,λ=23,9λ=6⇒λ=23
Hence, A, B, C are collinear and B divides [AC] in the ratio 23:1 i.e., 2 : 3