wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Open in App
Solution

The three given points A( 1,2,8 ),B( 5,0,2 )andC( 11,3,7 ) are collinear if,

| AB |+| BC |=| AC |(1)

The vector AB is,

AB =( 51 ) i ^ +( 0( 2 ) ) j ^ +( 2( 8 ) ) k ^ AB =4 i ^ +2 j ^ +6 k ^

The magnitude of AB is,

| AB |= 4 2 + 2 2 + 6 2 | AB |= 56 | AB |=2 14

The vector BC is,

BC =( 115 ) i ^ +( 3( 0 ) ) j ^ +( 7( 2 ) ) k ^ BC =6 i ^ +3 j ^ +9 k ^

The magnitude of BC is,

| BC |= 6 2 + 3 2 + 9 2 | BC |= 126 | BC |=3 14

The vector AC is,

AC =( 111 ) i ^ +( 3( 2 ) ) j ^ +( 7( 8 ) ) k ^ AC =10 i ^ +5 j ^ +15 k ^

The magnitude of AC is,

| AC |= 10 2 + 5 2 + 15 2 | AC |= 350 | AC |=5 14

Substitute the values of | AB |, | BC | and | AC | in the LHS of equation (1).

| AB |+| BC |=2 14 +3 14 =5 14 =| AC |

Therefore, A, B and C are collinear.

Consider that Bdivides ACin the ratio m:1. Then, the position vector will be, OB = m. OC +1. OA m+1 5 i ^ +0 j ^ 2 k ^ = m.( 11 i ^ +3 j ^ +7 k ^ )+1.( 1 i ^ 2 j ^ 8 k ^ ) m+1 5 i ^ +0 j ^ 2 k ^ = 11m i ^ +3m j ^ +7m k ^ +1 i ^ 2 j ^ 8 k ^ m+1 5 i ^ +0 j ^ 2 k ^ = ( 11m+1 ) i ^ +( 3m2 ) j ^ +( 7m8 ) k ^ m+1

Simplifying further,

5 i ^ +0 j ^ 2 k ^ = ( 11m+1 ) i ^ m+1 + ( 3m2 ) j ^ m+1 + ( 7m8 ) k ^ m+1

Comparing both sides,

( 11m+1 ) m+1 =5 11m+1=5m+5 6m=4 m= 2 3

Thus, Bdivides AC in ratio 2:3.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon