Given that
Point A(3,2,-4), B(5,4,-6) & C(9,8,-10) are collinear
B must divide line segment AC in some ratio externally and internally
We know that
Co-ordinate of point A(x,y,z) that divides line segment joining (x1,y1,z1) and (x2,y2,z2) in ratio m:n is
(x,y,z)=(mx2+nx1m+n,my2+ny1m+n)
Let point B(5,4,−6) divide line segment A(3,2,−4) and C(9,8,−10) in the ratio k:1
B(5,4,−6)=(9k+3k+1,8k+2k+1,−10k−4k+1)
Comparing x-coordinate of B
5=9k+3k+1
5k+5=9k+3
9k−5k=5−3
4k=2
k=12
So, k:1=1:2
Thus, point B divides AC in the ratio 1:2