Let the points be represented by A(a,a),B(−a,−a) and C(−a√3,a√3). Using the distance formula
d=√(x2−x1)2+(y2−y1)2, we have
AB=√(a+a)2+(a+a)2
=√(2a)2+(2a)2=√4a2+4a2=√8a2=2√2a
BC=√(−a√3+a)2+(a√3+a)2=√3a2+a2−2a2√3+3a2+a2+2a2√3
=√8a2=√4×2a2=2√2a
CA=√(a+a√3)2+(a−a√3)2=√a2+2a2√3+3a2+a2−2a2√3+3a2
=√8a2=2√2a
∴AB=BC=CA=2√2a.
Since all the sides are equal the points form an equilateral triangle.