Let A(a,a),B(−a,−a)andC(−√3a,√3a) be the given points. Then, we have
AB=√(−a−a)2+(−a−a)2=√4a2+4a2=2√2a
BC=√(−√3a+a)2+(√3a+a)2
BC=√a2(1−√3)2+a2(√3+1)2
BC=a√(1−√3)2+(1+√3)2
BC=a√1+3−2√3+1+3+2√3=a√8=2√2a
AC=√(−√3a−a)2+(√3a−a)2
AC=√a2(√3+1)2+a2(√3−1)2
AC=a√(√3+1)2+(√3)−1)2
AC=a√3+1+2√3+3+1−2√3=a√8=2√2a
Clearly, we have
AB=BC=AC
Hence, the triangle ABC formed by the given points is an equilateral triangle.
Now,
Areaof△ABC=√34(Side)2
⇒Areaof△ABC=√34×AB2
⇒Areaof△ABC=√34×(2√2a)2sq.units=2√3a2sq.units