To show that it is an equilateral triangle we will show that the 3 sides AB, AC and BC are equal.
We will use the distance formula to calculate the legths of the sides.
if (x1,y1) and (x2,y2) are 2 points then the distance d between them is given by the formula
d= √((x1−x2)2+(y1−y2)2). Appllyinhg this formula we get:
AB = √((a−(−a))2+(a−(−a)2)
= √((a+a)2+(a+a)2)
= √((2a)2+(2a)2)
= √(4a2+4a2)
= √(8a2)
= 2a√2
AC = √((a−(−a√3))2+(a−a√3)2)
= √((a+a√3)2+(a−a√3)2)
=√(a2+2a√3+3a2+a2−2a√3+3a2)
= √(8a2)
= 2a√2
BC = √((−a−(−a√3))2+(−a−a√3)2)
=√((−a+a√3)2+(−a−a√3)2)
= √(a2−2a√3+3a2+a2+2a√3+3a2)
= √(8a2)
= 2a√2
It is seen from above that AB=AC=BC and therefore ABC is an equilateral triangle.
Proved