Show that the points A,B and C with position vectors, a=3^i−4^j−4^k, b=2^i−^j+^k and c=^i−3^j−5^k respectively, form the vertices of a right angled triangle.
Position vectors of points A, B and C are respectively given as
a=3^i−4^j−4^k, b=2^i−^j+^k and c=^i−3^j−5^k
Now, AB=b−a=(PV of B−PV of A)⇒ b−a=[(2^i−^j+^k)−(3^i−4^j−4^k)]=−^i+3^j+5^k
Comparing with X=x^i+y^j+z^k, we getx=−1, y=3, z=5
Magnitude of AB, |AB| =√x2+y2+z2=√(−1)2+(3)2+(5)2=√1+9+25=√35
∴ |AB|2=35
Similarly, BC=c−b=(PV of C−PV of B)
⇒ c−b=(^i−3^j−5^k)−(2^i−^j+^k)=−^i−2^j−6^k
Similarly, |BC|=√(−1)2+(−2)2+(−6)2⇒ |BC|2=41
and CA=a−c=(PV of A−PV of C)⇒ a−c=(3^i−4^j−4^k)−(^i−3^j=5^k)=2^i−^j+^k |CA|=√(2)2+(−1)2+(1)2=√4+1+1=√6⇒|CA|2=6
Now, we find |AB|2+|CA|2 = 35+6+41=|BC|2
Therefore, △ABC is a right angled triangle with right angle at A.