Show that the points (a, b, c), (b, c, a) and (c, a, b) are the vertices of an equilateral triangle.
Here, A(a, b, c), B(b, c, a), C(c, a, b)
AB = √(b−a)2+(c−b)2+)(a−c)2
=√b2−2ab+a2+c2−2bc+b2+a2−2ac+c2
=√2a2+2b2+2c2−2ab−2bc−2ca
=√2(a2+b2+c2−ab−bc−ca)
=√b2+c2−2bc+c2+a2−2ac+a2+b2−2ab
BC=√(c−b)2+(a−c)2+(b−a)2
=√c2−2bc+b2+a2−2ac+c2+b2−2ab+a2
=√2a2+2b2+2c2−2ab−2bc−2ca
=√2(a2+b2+c2−ab−bc−ca)
CA=√(a−c)2+(b−a)2+(c−b)2
=√a2+c2−2ac+b2+a2−2ab+b2+c2−2bc
CA=√2a2+2b2+2c2−2ab−2bc−2ca
Since, AB = BC = CA, so
△ABC is an equilateral triangle.