wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the points A,B,C with position vectors a=(3^i4^j4^k), b=(2^i^j+^k) and c=(^i3^j5^k) respectively,form the vertices of a right-angled triangle.

Open in App
Solution

Given, a=3^i4^j4^k
b=^2^j+^k
c=^i^3j^5k
AB=ba=(^2i^j+^k)(^3i^4j^4k)
=^2i^j+^k^3i+^4j+^4k
=^i+^3j+^5k
BC=cb=(^i^3j^5k)(^2i^j+^k)
=^i^2j^6k
CA=ac=(^3i^4j^4k)(^i^3j^5k)
=^3i^4j^4k^i+^3j+^5k
=^2i^j+^k
AB.BC=(^i+^3j+^5k)(^i^3j^5k)
=(-1)(-1)+(3)(-2)+(5)(-6)
=1630=350
AB.CA=(^i+^3j+^5k)(^2i^j+^k)
=(-1)(2)+(3)(-1)+(5)(1)
=-2-3+5=0.
ABCA
Δ ABC froms a right angle triangle of A.


1216019_1390895_ans_8f287a65f960438e9f9501a6a53ce384.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon