consider the problem
If four points are concyclic then 4th point must satisfy equation of circle passing through other three points.
Let, x2+y2+2gx+2fy+c=0 be equation of circle
(5,6),(6,4),and(7,1) must satisfy circle
(5,5)→25+25+10g+10f+c=0⇒10g+10f+c=−50(i)
(6,4)→36+16+12g+8f+c=0⇒12g+8f+c=−52(ii)
(7,1)→49+1+14g+2f+c=0⇒14g+2f+c=−50(iii)
And (ii)−(i)
⇒2g−2f=−2…(iv)
(iii)−(ii)
⇒2g−6f=2…(v)
(iv)−(v)
2g−2f−2g+6f=−2−2⇒4f=−4⇒f=−1
Put in (iv)
2g+2=−2⇒g=−2
10g+10f+c=−50
Put in (i)
−20−10+c=−50⇒c=−20
Therefore, equation is x2+y2−4x−2y−20=0
Now, put (−2,4) in R.H.S
4+16+8−8−20=28−28=0
Therefore, (−2,4) satisfies circle passing through (5,5),(6,4)and(7,1)
Hence, (5,5),(6,4),(−2,4)and(7,1) are concyclic
Center is (2,1)
And Radius is
=√4+1−(−20)=√25=5