Let the given numbers be represented on the Argand plane by the point A, B and C respectively. Then,
AB=|(3+3i)−(−3−3i)|=|6+6i|=√(6)2+(6)2=√72=6√2(d=|z1|−z2)
BC=|(−3−3i)−(−3√3+3√3i)|=|3(√3−1)−3(1+√3)i|=√9(√3−1)2+9(1+√3)2=√9[(√3−1)2+(√3+1)2]=√9(3+1−2√3+3+1+2√3)
=√9×8=√72=6√2
AC=|(3+3i)−(−3√3+3√3i)|=|3(1+√3)+3(1−√3)i|=√9(1+√3)2+9(1−√3)2=√9(1+√3)2+(1−√3)2=√9×8=√72=6√2
Thus, AB =BC =AC. Hence, the given points on the Argand plane are the vertices of an equilateral triangle.