By the law of vectors if →a+→b=→c or →a+→b=→c then the vectors form the sides of a triangle.
Let the points A,B,C have position vectors
−−→OA=4^i−3^j+^k,−−→OB=2^i−4^i−4^j+5^k,
−−→OC=^i−^j
−−→AB=−−→OB−−−→OA=2^i−4^j+5^k−4^i+3^k−^k=2^i−^j+4^k
−−→BC=−−→OC−−−→OB=^i−^j−2^i+4^j−5^k=^i+3^j−5^k
−−→CA=−−→OA−−−→OC=4^i−3^j+^k−^i+^j=3^i−2^j+^k
Now −−→AB.−−→BC=(−2)(−1)+(−1)(3)+(4)(−5)
=2−3−20=−21≠0
−−→BC.−−→CA=(−1)(3)+(3)(−2)+(−5)(1)
=−3−6−5=−14≠0
−−→CA.−−→AB=(3)(−2)+(−2)(−1)+(1)(4)
=−6+2+4=0
⇒−−→CA⊥−−→AB
⇒ΔABC is right angle at A