wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the product of perpendiculars on the line xacosθ+ybsinθ=1 from the points (±a2b2,0) is b2.

Open in App
Solution

Let p1 and p1 be the lengths of perpendicular draw from point P(a2b2,0)

Q(a2b2,0) on the line xacosθ+ybsinθ=1.

Then,

P1=∣ ∣ ∣ ∣ ∣ ∣a2b2acosθ+0bsinθ1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣=∣ ∣ ∣ ∣ ∣ ∣a2b2acosθ1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣

P2= ∣ ∣ ∣ ∣ ∣ ∣a2b2acosθ+0bsinθ1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣=∣ ∣ ∣ ∣ ∣ ∣a2b2acosθ+1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣


P1P2=∣ ∣ ∣ ∣ ∣ ∣a2b2acosθ1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣×∣ ∣ ∣ ∣ ∣ ∣a2b2acosθ+1cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣

P1P2=∣ ∣ ∣ ∣ ∣ ∣(a2b2acosθ1)(a2b2acosθ+1)cos2θa2+sin2θb2∣ ∣ ∣ ∣ ∣ ∣

P1P2= ∣ ∣ ∣ ∣a2b2acos2θ1cos2θa2+sin2θb2∣ ∣ ∣ ∣=∣ ∣ ∣(a2b2)cos2θa2b2cos2θ+a2sin2θ∣ ∣ ∣b2

P1P2= b2cos2θa2sin2θb2cos2θ+a2sin2θb2=b2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon