wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the product of the perpendiculars drawn from the two points (±a2b2,0) upon the straight line
xacosθ+ybsinθ=1isb2.

Open in App
Solution

xacosθ+ybsinθ=1bxcosθ+aysinθ=abbxcosθ+aysinθab=0

Let p1 be the perpendicular from (a2b2,0)

p1=bcosθa2b20(aysinθ)abb2cos2θ+a2sin2θp1=bcosθa2b2abb2cos2θ+a2sin2θ

p2 be the perpendicular from (a2b2,0)

p2=bcosθa2b20(aysinθ)abb2cos2θ+a2sin2θp2=bcosθa2b2+abb2cos2θ+a2sin2θ

p1p2=∣ ∣(bcosθa2b2abb2cos2θ+a2sin2θ)(bcosθa2b2+abb2cos2θ+a2sin2θ)∣ ∣p1p2=∣ ∣(bcosθa2b2)2(ab)2b2cos2θ+a2sin2θ∣ ∣p1p2=∣ ∣b2cos2θ(a2b2)a2b2b2cos2θ+a2sin2θ∣ ∣p1p2=∣ ∣b2{cos2θ(a2b2)a2}b2cos2θ+a2sin2θ∣ ∣p1p2=b2∣ ∣{a2cos2θb2cos2θa2}b2cos2θ+a2sin2θ∣ ∣p1p2=b2∣ ∣{a2(cos2θ1)b2cos2θ}b2cos2θ+a2sin2θ∣ ∣p1p2=b2b2cos2θa2sin2θb2cos2θ+a2sin2θp1p2=b2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and a Point
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon