xacosθ+ybsinθ=1bxcosθ+aysinθ=abbxcosθ+aysinθ−ab=0
Let p1 be the perpendicular from (√a2−b2,0)
p1=∣∣bcosθ√a2−b2−0(aysinθ)−ab∣∣√b2cos2θ+a2sin2θp1=∣∣bcosθ√a2−b2−ab∣∣√b2cos2θ+a2sin2θ
p2 be the perpendicular from (−√a2−b2,0)
p2=∣∣−bcosθ√a2−b2−0(aysinθ)−ab∣∣√b2cos2θ+a2sin2θp2=∣∣bcosθ√a2−b2+ab∣∣√b2cos2θ+a2sin2θ
p1p2=∣∣ ∣∣(bcosθ√a2−b2−ab√b2cos2θ+a2sin2θ)(bcosθ√a2−b2+ab√b2cos2θ+a2sin2θ)∣∣ ∣∣p1p2=∣∣ ∣∣(bcosθ√a2−b2)2−(ab)2b2cos2θ+a2sin2θ∣∣ ∣∣p1p2=∣∣ ∣∣b2cos2θ(a2−b2)−a2b2b2cos2θ+a2sin2θ∣∣ ∣∣p1p2=∣∣ ∣∣b2{cos2θ(a2−b2)−a2}b2cos2θ+a2sin2θ∣∣ ∣∣p1p2=b2∣∣ ∣∣{a2cos2θ−b2cos2θ−a2}b2cos2θ+a2sin2θ∣∣ ∣∣p1p2=b2∣∣ ∣∣{a2(cos2θ−1)−b2cos2θ}b2cos2θ+a2sin2θ∣∣ ∣∣p1p2=b2∣∣∣−b2cos2θ−a2sin2θb2cos2θ+a2sin2θ∣∣∣p1p2=b2