wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a rectangle is a rhombus.

Open in App
Solution

Suppose PQRS is a rectangle and A, B, C and D are the midpoints of PQ, QR, RS and SP, respectively.

Construction:
Join PR and QS.

Consider PQS.A and D are the midpoints of PQ and PS respectively . By midpoint theorem,AD=12QS ...(1)and ADQS ...(2)Now, consider QRS.B and C are the midpoints of RQ and RS respectively . By midpoint theorem,BC=12QS ...(3)and BCQS ...(4)Using equations (1) and (3), we get:AD=BCUsing equations (2) and (4), we get:ADBCSince, the opposite sides of the quadrilateral ABCD are parallel and equal, so ABCD is a parallelogram.As PQRS is a rhombus , SP=RQ12SP=12RQ D and B are mid points of SP and RQ respectively DP=BQIn DPA & BQADP=BQ Proved aboveDPA=BQA 90° eachPA=QA A is mid point of PQ DPA BQA by SAS congruency criteriaAD=AB by c.s.c.tABCD is a parallelogram with AD=ABHence, ABCD is a rhombus .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Mid-Point Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon