Let ABCD be the rectangle and P,Q,R,S be the midpoints of AB,BC,CD,DA respectively.
Join AC, a diagonal of the rectangle.
In ΔABC, we have:
PQ||AC and PQ=12AC [By midpoint theorem]
Again, in ΔDAC, the points S and R are the mid points of AD and DC, respectively.
SR||AC and SR=12AC [By midpoint theorem]
Now, PQ||AC and SR||AC and PQ||SR
Also, PQ=SR [Each equal to 12AC] . . . . . . . (i)
So, PQRS is a parallelogram.
Now, in ΔSAP and ΔQBP, we have:
AS=BQ,∠A=∠B=90∘andAP=BP
i.e.,ΔSAP∼ΔQBP
PS=PQ . . . . . . . . . (ii)
Similarly, ΔSDR∼ΔQCR
SR=RQ . . . . . . . . (iii)
From (i), (ii) and (iii), we have:
PQ=PS=SR=RQ
Hence, PQRS is a rhombus.