let N={1,2,........,9}
Toolbox: - 1.R is an equivalance relation if R is
- a) reflexive ie (a,b)∈N×N (a,b)R(a,b)
- b) symmetric ie (a,b)R(c,d)=>(c,d)R(a,b) (a,b)(c,a)∈N×N
- c) transitive ie (a,b)R(c,d);(c,d)R(e,f)=>(a,b)R(e,f) (a,b)(c,d),(e,f)∈N×N
A={1,2,3......9}A={1,2,3......9}
R in N×N
(a,b)R(c,d) if (a,b)(c,d)∈N×N
a+b=b+c
Consider (a,b)R(a,b) (a,b)∈N×N
a+b=b+a
Hence R is reflexive
Consider (a,b)R(c,d)given by (a,b)(c,d)∈N×N
a+d=b+c=>c+b=d+a
=>(c,d)R(a,b)
Hence R is symmetric
Let (a,b)R(c,d)and(c,d)R(e,f)
(a,b),(c,d),(e,f),∈N×N
a+b=b+c and c+f=d+e
a+b=b+c
=>a−c=b−d........(1)
c+f=d+e,,,,,,,,,,,,,,,(2)
adding (1) and (2)
a−c+c+f=b−d+d+e
a+f=b+e
=>(a,b)R(e,f)
R is transitive
R is an equivalnce relation