It is given that
V=consant=π3r2h
Then
h=3Vπ.r2 ...(i)
Now
CSA =πrl
=πr(√h2+r2)
=πr√9V2π2r4+r2
=π.rπ.r2√9V2+π2r6
=√9V2+π2r6r
Let A=CSA2
=9V2+π2r6r2
=9V2r2+π2r4
dAdr=−18V2r3+4π2r3 =0
Hence
18V2r3=4π2r3
r6=18V24π2
r3=3√2V2π
r2.r=3√2V2π...(ii)
Now
h=3Vπ.r2 Or
r2=3Vπh
Substituting in ii gives us
r2.r=3√2V2π
3Vπh.r=3√2V2π
rh=√22
rh=1√2
h=√2r.
Hence proved.