Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan−1√2.
Show that the semi-vertical angle of the right circular cone of given surface area and maximum volume is sin−1(13)
Let θ be the semi-vertical angle of the cone.
It is clear that θ ϵ(0,π2).
Let r, h and I be the radius, height and the slant height of the cone respectively.
Tge slant height of the cone is given i.e., consider as constant.
Let V be the volume of the cone; V=π3r2h
⇒V=13π(l2sin2θ)(l cosθ)=13πl3sin2θcosθ
On differentiating w.r.t. θ, we get
dVdθ=l3π3[sin2θ(−sinθ)]+cosθ(2sinθcosθ)
=l3π3(−sin3θ+2sinθcos2θ)
and d2Vdθ2=l3π3(−3sin2θcosθ+2cos3θ−4sin2θcosθ)
=l3π3(2cos3θ−7sin2θcosθ)
For maxima put dVdθ=0
⇒sin3θ=2sinθcos2θ⇒tan2θ=2⇒tanθ=√2⇒θ=tan−1√2
Now, when θ=tan−1√2, then tan2θ=2 or sin2θ=2cos2θ
Then, we have
d2Vdθ2=I3π3(2cos3θ−14cos3θ)=−4πl3cos3θ<0 for θϵ(0,π2)
∴ By second derivative test, the volume V is maximum when θ=tan−1√2
Hence, for a given slant height, the semi-vertical angle of the cone of the maximum volume is tan−1√2
With usual notation, given that total surface area S=πrl+πr2
⇒S=πr√r2+h2+πr2 (∵l=√r2+h2)
⇒Sπr−r=√r2+h2⇒S2π2r2−2Sπ=h2⇒h=√S2π2r2−2Sπ (∵S2π2r2>2Sπ) …(i)
and volume V=13πr2h=13πr2√(S2π2r2−2Sπ)
⇒V=r3√S2−2Sπr2,r2<S2π i.e., 0<r<√S2π
Since, V is maximum, then V2 is maximum
Now, V2=S2r29−2Sπr49,0<r<√S2π
∴ddr(V2)=2rS29−8Sπr39
and ddr2(V2)=2S29−24Sπr29
For maxima put dVdr=0
⇒2rS29−8Sπr39=0⇒r2=S4π⇒d2(V2)dr2<0for r=√S4π
From Eq. (i) h=√S2π2r2−2Sπ=√S2(4π)π2S−2Sπ=√2Sπ
If θ is semi-vertical angle of the cone when the volume is maximum,
then in right triangle AOC,
sinθ=r√r2+h2=−√S4π√S4π+2Sπ=1√1+8i.e.,θ=sin−1(13)