Show that the semi-vertical angle of the right circular cone of given surface area and maximum volume is sin−1(13)
With usual notation, given that total surface area S=πrl+πr2
⇒S=πr√r2+h2+πr2 (∵I=√r2+h2)
⇒Sπr−r=√r2+h2⇒S2π2r2−2Sπ=h2⇒h=√S2π2r2−2Sπ (∵S2π2r2>2Sπ) …(i)
and volume V=13πr2h=13πr2√S2π2r2−2Sπ
⇒V=r3√S2−2Sπr2,r2<S2π i.e., 0<r<√S2π
Since, V is maximum, then V^2 is maximum\\
Now, V2=S2r29−2Sπr49,0<r<√S2π
∴ddr(V2)=2rS29=8Sπr39
and ddr2(V2)=2S29−24Sπr29
For maxima put dVdr=0
⇒2rS29−8Sπr39=0⇒r2=S4π⇒d2(V2)dr2<0 for r=√S4π
From Eq. (i) h=√S2π2r2−2Sπ=√S2(4π)π2S−2Sπ=√2Sπ
If θ is semi-vertical angle of the cone when the volume is maximum,
then in right triangle AOC,
sinθ=rr2+h2=−√S4π√S4π+2Sπ=1√1+8i.e.,θ=sin−1(13)