G be the set of all positive rationals
let a∗b=ab3
(i) closure property
Let x,y∈Q+
Now x∗y=xy3>0
(∵x>0,y>0⇒xy>0⇒xy3>0
∴x∗y∈Q+.∀x,y∈Q+
(ii) Associative property :-
Let x,y,z∈Q+
x∗(y∗z)=x∗(yz3)=x(yz)9=(xy)z9=(x∗y)z3
=(x∗y)∗z
∴ Associative property hold ∀x,y,z∈Q+
(iii) Identity :-
Let a be the identity in Q+ s.t
a∗x=x∀x∈Q+
⇒ax3=x⇒ax=3x
⇒(a−3)x=0⇒a−3=0(∵x>0)
⇒a=3
∴a=3 is the identity in Q+∀x∈Q+ under the given composition.
(iv) Inverse :-
Let x∈Q+, Let y be element in Q+ s.t
xy=3⇒y=3x>0∈Q+
∴ For each x∈Q+,3x is the inverse of x
Hence under the given composition a∗b=ab3 in Q+, is a Group.