dxdy=tan−1y1+y2−x1+y2
dxdy+x1+y2=tan−1y1+y2
The integrating factor is
I.F=e∫11+y2.dy
=etan−1y
Multiplying the entire equation by I.F
etan−1ydxdy+etan−1yx1+y2=tan−1y1+y2.etan−1y
∫d(etan−1yx)=∫tan−1y1+y2.etan−1ydy
etan−1yx=∫tan−1y1+y2.etan−1y
Consider
I=∫tan−1y1+y2.etan−1y
Let
tan−1y=t
Then
11+y2dy=dt
Hence
I=∫t.et
=ett−et
=et(t−1)
=etan−1y(tan−1y−1)
Hence
etan−1yx=∫tan−1y1+y2.etan−1y
etan−1yx=etan−1y(tan−1y−1)+C
x=Ce−tan−1y+tan−1y−1