wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the solution of (1+y2)dx={tan1yx)dy is x=cearctany+arctany1

Open in App
Solution

dxdy=tan1y1+y2x1+y2
dxdy+x1+y2=tan1y1+y2
The integrating factor is
I.F=e11+y2.dy
=etan1y
Multiplying the entire equation by I.F
etan1ydxdy+etan1yx1+y2=tan1y1+y2.etan1y
d(etan1yx)=tan1y1+y2.etan1ydy
etan1yx=tan1y1+y2.etan1y
Consider
I=tan1y1+y2.etan1y
Let
tan1y=t
Then
11+y2dy=dt
Hence
I=t.et
=ettet
=et(t1)
=etan1y(tan1y1)
Hence
etan1yx=tan1y1+y2.etan1y
etan1yx=etan1y(tan1y1)+C
x=Cetan1y+tan1y1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon