1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Linear Differential Equations of First Order
Show that the...
Question
Show that the solution of the differential equation
d
y
d
x
=
1
+
x
y
2
+
x
+
y
2
,
y
(
0
)
=
0
is
y
=
tan
(
x
+
x
2
2
)
.
Open in App
Solution
y
=
tan
(
x
+
x
2
2
)
differentiating on both sides, we get,
d
y
d
x
=
sec
2
(
x
+
x
2
2
)
(
1
+
x
)
=
[
1
+
tan
2
(
x
+
x
2
2
)
]
(
1
+
x
)
=
(
1
+
y
2
)
(
1
+
x
)
∴
d
y
d
x
=
1
+
x
y
2
+
x
+
y
2
Hence proved.
Suggest Corrections
0
Similar questions
Q.
The solution of the differential equation
d
y
d
x
=
1
+
x
+
y
2
+
x
y
2
,
y
0
=
0
is
(a)
y
2
=
exp
x
+
x
2
2
-
1
(b)
y
2
=
1
+
C
exp
x
+
x
2
2
(c) y = tan (C + x + x
2
)
(d)
y
=
tan
x
+
x
2
2
Q.
The solution of the differential equation
d
y
d
x
+
y
2
sec
x
=
tan
x
2
y
,
where
0
≤
x
≤
π
2
,
and
y
(
0
)
=
1
,
is given by:
Q.
The solution of the differential equation
d
y
d
x
+
y
2
sec
x
=
tan
x
2
y
,
where
0
≤
x
≤
π
2
,
and
y
(
0
)
=
1
,
is given by:
Q.
The solution of the differential equation
d
y
d
x
+
y
2
sec
x
=
tan
x
2
y
, where
0
≤
x
<
π
2
and
y
(
0
)
=
1
, is given by:
Q.
If
y
=
y
(
x
)
is the solution of the differential equation
d
y
d
x
=
(
tan
x
−
y
)
sec
2
x
,
x
∈
(
−
π
2
,
π
2
)
,
such that
y
(
0
)
=
0
,
then
y
(
−
π
4
)
is equal to :
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Explore more
Linear Differential Equations of First Order
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app