(A2−3B2)x2+8ABxy+(B2−3A2)y2=0
Given equation is homogenous equation of second degree. So the point of intersection of lines is (0,0)
Angle Between the pair of straight lines tanθ=∣∣ ∣∣2√h2−ABA+B∣∣ ∣∣
tanθ=∣∣ ∣ ∣∣2√16A2B2−(A2−3B2)(B2−3A2)A2−3B2+B2−3A2∣∣ ∣ ∣∣tanθ=∣∣ ∣ ∣∣2√16A2B2−(A2B2−3A4−3B4+9A2B2)−2(A2+B2)∣∣ ∣ ∣∣tanθ=∣∣ ∣ ∣∣√3(A4+B4+2A2B2)A2+B2∣∣ ∣ ∣∣=√3⇒θ=60∘
Now,
(A2−3B2)x2+8ABxy+(B2−3A2)y2=0A2x2−3B2x2+8ABxy+B2y2−3A2y2=0A2x2+B2y2+2ABxy+6ABxy−3B2x2−3A2y2=0(Ax+By)2−3(Bx−Ay)2=0(Ax+By)2−(√3(Bx−Ay))2=0
Factorising the equation
(Ax+By+√3Bx−√3Ay)((Ax+By−(√3Bx−√3Ay))=0(A+√3B)x+(B−√3A)y=0,(A−√3B)x+(B+√3A)y=0(A+√3B)x+(B−√3A)y=0.........(i)(A−√3B)x+(B+√3A)y=0........(ii)
Given line is Ax+By+c=0.........(iii)
Angle Between (i) And (iii) that is tanθ=∣∣∣m1−m21+m1m2∣∣∣
tanθ=∣∣ ∣ ∣ ∣ ∣∣A+√3B√3A−B−−AB1+(A+√3B√3A−B)(−AB)∣∣ ∣ ∣ ∣ ∣∣=∣∣ ∣ ∣ ∣ ∣∣AB+√3A2+√3A2−AB(√3A−B)B√3AB−A2−B2−√3AB(√3A−B)B∣∣ ∣ ∣ ∣ ∣∣=∣∣ ∣∣√3(A2+B2)−A2−B2∣∣ ∣∣tanθ=√3⇒θ=60∘
Angle Between (ii) And (iii)
using Angle sum property of triangle =180−60−60=60
All the Angles of triangle are equal .Hence proved that triangle is equilateral.
Area of equilateral triangle =√34A2=p2√3
where a is the length of side and p is the length of prependicular
Length of prependicular from (0,0) to Ax+By+c=0 =A.0+B.0+c√A2+B2=c√A2+B2
Hence Area =1√3×(c√A2+B2)2=c2√3(A2+B2)