Show that the straight lines L1=(b+c)x+ay+1=0, L2=(c+a) x+by+1=0 and L3=(a+b)x+cy+1=0 are concurrent.
The three lines are concurrent if they have the common point of intersection
(b+c)x+ay+1=0
(c+a)x+by+1=0
(a+b)x+cy+1=0
Solving (1) and (2)
y=−1−(b+c)xa
Putting in (2)
(c+a)x+b(−1−(b+c)x)a+1=0
acx+a2x+b−b2x−bcx+a=0
x(ac+a2−b2−bc)=b−a
x(ac−bc+a2−b2)=b−a
x(c(a−b)+(a−b)(a+b))=b−a
x(c+a+b)=−1 [Cancelling (a−b) both sides]
x=−1a+b+c
y=−1+(b+c)(−1)a+b+ca=−a−b−c−b−ca(a+b+c)
Putting the value of x, y in (3) ;
(a+b)(−1a+b+c)+c(−a−2b−2ca(a+b+c))+1=0
−a2−ba−ac−2bc−2c2+a2+ab+ac=0
0=0
Hence, the lines are concurrent.