Given that, the AP is a, b, …..c
Here, first term = a, common difference = b – a
And last term, l=an=c
∵ an=l=a(n−1)d
⇒ c=a+(n−1)(b−a)
⇒ (n−1)=c−ab−a
⇒ n=c−ab−a+1
⇒ n=c−a+b−ab−a=c+b−2ab−a
∴ Sum of an AP, Sn=n2[2a+(n−1)d]
=(b+c−2a)2(b−a)[2a+{b+c−2ab−a−1}(b−a)]
=(b+c−2a)2(b−a)[2a+c−ab−a.(b−a)]
=(b+c−2a)2(b−a)(2a+c−a)
=(b+c−2a)2(b−a).(a+c)