Show that the sum of the three altitudes of a triangle is less than the sum of three sides of the triangle. [4 MARKS]
Concept : 1 Mark
Process : 2 Marks
Proof : 1 Mark
Given: A △ABC in which AD⊥BC, BE⊥AC and CF⊥AB.
To prove: AD + BE + CF < AB + BC + AC.
Proof: We know that of all the segments that can be drawn to a given line, from a point not lying on it,
the perpendicular line segment is the shortest.
Therefore,
AD ⊥ BC ⇒ AB > AD and AC > AD
⇒ AB+AC > AD + AD
⇒ AB+AC > 2 AD .....(i)
BE ⊥ AC ⇒ BC > BE and BA > BE
⇒ BC + BA> BE + BE
⇒ BA + BC > 2 BE ...(ii)
And, CF ⊥ AB ⇒ AC > CF and BC > CF
⇒ AC + BC > 2 CF ...(iii)
Adding(i),(ii) and (iii), we get
(AB + AC) + (AB + BC) + (AC + BC) > 2 AD + 2 BE + 2 CF
⇒ 2(AB + BC + AC) > 2(AD + BE +CF)
⇒ AD + BE + CF < AB + BC + AC