We have,
Equation of parabola ( 1),
y2=4ax
On differentiating and we get,
2ydydx=4a
⇒dydx=2ay
At the point (a,2a)
dydx=(2a2a)=1
Now, Equation of parabola (2),
x2=4ay
On differentiating and we get,
2x=4ady1dx
dy1dx=x2a
At the point (a,2a)
dy1dx=(a2a)=12
Then,
dydx≠dy1dx
Hence, it is not common tangent.