Show that the triangle with vertices at the points z1,z2 and (1−i)z1+iz2 is right angled and isosceles.
Open in App
Solution
If the given points be A,B,C |AB|=|z1−z2|, |BC|=|(1−i)z1−(1−i)z2| =|1−i||z1−z2|=√2|z1−z2| |CA|=|i(z1−z2)|=|i||z1−z2|=|z1−z2| Clearly AB=CA and also AB2+CA2=BC2=2|z1−z2|2 ∵BC=√2|z1−z2| Hence the triangle is right angled isosceles.