Show that the two formulae for the standard deviation of ungrouped data .
σ=√1n∑(xi−¯¯¯¯¯X)2 and σ′=√1n∑x2i−¯¯¯¯¯X2 are equivalent , where ¯¯¯¯¯X=1n∑xi
σ=√1n∑(xi−¯¯¯¯¯X)2
=√1n∑(x2i−2xi¯¯¯¯¯X+¯¯¯¯¯X)2=√1n∑x2i−1n∑2xi¯¯¯¯¯X+1n∑¯¯¯¯¯X2
=√1n∑x2i−1n×2¯¯¯¯¯X∑xi+1nׯ¯¯¯¯X2∑1
=√1n∑x2i−1n×2¯¯¯¯¯X×n¯¯¯¯¯X+1nׯ¯¯¯¯X2×n (¯¯¯¯¯X=1n∑xi)
=√1n∑x2i−2¯¯¯¯¯X+¯¯¯¯¯X2=√1n∑x2i−¯¯¯¯¯X2=σ1
Hence, the formula σ=√1n∑(xi−¯¯¯¯¯X)2 and σ=√1n∑x2i−¯¯¯¯¯X2 are equivalent, where ¯¯¯¯¯X=1n∑xi