x2(tan2θ+cos2θ)−2xytanθ+y2sin2θ=0⇒y2sin2θ−2xytanθ+x2(tan2θ+cos2θ)=0
y=−(−2xtanθ)±√4x2tan2θ−4(sin2θ)x2(tan2θ+cos2θ)2sin2θ
y=2xtanθ±2x√sin2θcos2θ−sin2θ(sin2θcos2θ+cos2θ)2sin2θ
y=xtanθ±x√sin2θcos2θ−sin4θcos2θ−sin2θcos2θsin2θ
y=xtanθ±x√sin2θ−sin4θ−sin2θcos4θcos2θsin2θ
y=xtanθ±x√sin2θ(1−sin2θ−cos4θ)cos2θsin2θ=xtanθ±x√sin2θ(cos2θ−cos4θ)cos2θsin2θ
y=xtanθ±x√sin2θcos2θ(1−cos2θ)cos2θsin2θ=xtanθ±xsin2θsin2θ=xtanθsin2θ±x
y=xtanθsin2θ+x and y=xtanθsin2θ−x
Slope of first line that is tanθ1=tanθsin2θ+1
Slope of second line tanθ2=tanθsin2θ−1
tanθ1−tanθ2=tanθsin2θ+1−(tanθsin2θ−1)=2
Hence proved