wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the two straight lines
x2(tan2θ+cos2θ)2xytanθ+y2sin2θ=0
make with the axis of x angles such that the difference of their tangents is 2.

Open in App
Solution

x2(tan2θ+cos2θ)2xytanθ+y2sin2θ=0y2sin2θ2xytanθ+x2(tan2θ+cos2θ)=0

y=(2xtanθ)±4x2tan2θ4(sin2θ)x2(tan2θ+cos2θ)2sin2θ

y=2xtanθ±2xsin2θcos2θsin2θ(sin2θcos2θ+cos2θ)2sin2θ

y=xtanθ±xsin2θcos2θsin4θcos2θsin2θcos2θsin2θ

y=xtanθ±xsin2θsin4θsin2θcos4θcos2θsin2θ

y=xtanθ±xsin2θ(1sin2θcos4θ)cos2θsin2θ=xtanθ±xsin2θ(cos2θcos4θ)cos2θsin2θ

y=xtanθ±xsin2θcos2θ(1cos2θ)cos2θsin2θ=xtanθ±xsin2θsin2θ=xtanθsin2θ±x

y=xtanθsin2θ+x and y=xtanθsin2θx

Slope of first line that is tanθ1=tanθsin2θ+1

Slope of second line tanθ2=tanθsin2θ1

tanθ1tanθ2=tanθsin2θ+1(tanθsin2θ1)=2

Hence proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon