Let A=2^i−^j+^k,B=^i−3^j−5^k and C=3^i−4^j−4^k
−−→AB=(^i−3^j−5^k)−(2^i−^j+^k)
⇒−−→AB=−^i−2^j−6^k
−−→BC=(3^i−4^j−4^k)−(^i−3^j−5^k)
⇒−−→BC=2^i−^j+^k
−−→CA=(2^i−^j+^k)−(3^i−4^j−4^k)
⇒−−→CA=−^i+3^j+5^k
−−→BC.−−→CA=(2^i−^j+^k).(−^j+3^j+5^k)
−−→BC.−−→CA=(2×−1)+(−1×3)+(1×5)
−−→BC.−−→CA=−5+5=0
⇒−−→BC.−−→CA=0
Hence, vector −−→BC is perpindicular to −−→CA.
So, the given points are vertices of a right angled triangle.