wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that the vectors 2^i^j+^k,^i3^j5^k and 3^i4^j4^k form the vertices of a right-angled

Open in App
Solution

Let A=2^i^j+^k,B=^i3^j5^k and C=3^i4^j4^k

AB=(^i3^j5^k)(2^i^j+^k)

AB=^i2^j6^k

BC=(3^i4^j4^k)(^i3^j5^k)

BC=2^i^j+^k

CA=(2^i^j+^k)(3^i4^j4^k)

CA=^i+3^j+5^k

BC.CA=(2^i^j+^k).(^j+3^j+5^k)

BC.CA=(2×1)+(1×3)+(1×5)

BC.CA=5+5=0

BC.CA=0

Hence, vector BC is perpindicular to CA.

So, the given points are vertices of a right angled triangle.

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon