wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that ABC is an isosceles triangle, if the determinant
∣ ∣1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC∣ ∣=0

Open in App
Solution

∣ ∣1111+cosA1+cosB1+cosCcos2A+cosAcos2B+cosBcos2C+cosC∣ ∣=0

Applying C1C1C3,C2C2C3, we get,
∣ ∣001cosAcosCcosBcosC1+cosCcos2A+cosAcos2CcosCcos2B+cosBcos2CcosCcos2C+cosC∣ ∣=0

∣ ∣ ∣001cosAcosCcosBcosC1+cosC(cosA+cosC+1)(cosAcosC)(cosB+cosC+1)(cosBcosC)cos2C+cosC∣ ∣ ∣=0

Taking (cosAcosC) common from C1 and (cosBcosC) common from C2, we get
(cosAcosC)(cosBcosC)∣ ∣001111+cosCcosA+cosC+1cosB+cosC+1cos2C+cosC∣ ∣=0

Expanding along R1,
(cosAcosC)(cosBcosC)[(cosB+cosC+1)(cosA+cosC+1)]=0
(cosAcosC)(cosBcosC)(cosBcosA)=0
cosA=cosC or cosB=cosC or cosB=cosA
A=C or B=C or B=A
Hence, ABC is an isosceles triangle.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon