Show that △ABC, where A(-2, 0), B(0, 2), and C(2, 0) and △PQR where P(-4, 0), Q(4, 0), R(0, 4) are similar triangles.
To prove that ΔABC∼ΔPQR
we need to show that ABPQ=BCQR=ACPR
We know that the distance between two points (x1,y1) and (x2,y2) is,
√(x2−x1)2+(y2−y1)2
In ΔABC vertices are A(-2, 0), B(0, 2), and C(2, 0).
AB=√(0−−2)2+(2−0)2=√(2)2+(2)2=√8=2√2
BC=√(2−0)2+(0−2)2=√(2)2+(2)2=√8=2√2
AC=√(2−(−2))2+(0−0)2=√(4)2=4
In ΔPQR vertices are P(-4, 0), Q(4, 0) and R(0, 4).
PQ=√(0−−4)2+(4−0)2=√(4)2+(4)2=√32=4√2
QR=√(4−0)2+(0−4)2=√(4)2+(4)2=√32=4√2
PR=√(2−(−2))2+(0−0)2=√(8)2=8
ABPQ=2√24√2=12BCQR=2√24√2=12ACPR=48=12
i.e,ABPQ=BCQR=ACPR
∴ΔABC∼ΔPQR