Show that △ABC with vertices A(-2, 0), B(0, 2), and C(2, 0) is similar to △DEF with vertices D(-4, 0), F(4, 0) and E(0, 4)
To prove that ΔABC∼ΔDEF
we need to show that ABDE=BCEF=ACDF
We know that the distance between two points (x1,y1) and (x2,y2) is,
√(x2−x1)2+(y2−y1)2
In ΔABC vertices are A(-2, 0), B(0, 2), and C(2, 0).
AB=√(0−−2)2+(2−0)2=√(2)2+(2)2=√8=2√2
BC=√(2−0)2+(0−2)2=√(2)2+(2)2=√8=2√2
AC=√(2−(−2))2+(0−0)2=√(4)2=4
In ΔDEF vertices are D(-4, 0), F(4, 0) and E(0, 4).
DE=√(0−−4)2+(4−0)2=√(4)2+(4)2=√32=4√2
EF=√(4−0)2+(0−4)2=√(4)2+(4)2=√32=4√2
DF=√(2−(−2))2+(0−0)2=√(8)2=8
ABDE=2√24√2=12BCEF=2√24√2=12ACDF=48=12
i.e,ABDE=BCEF=ACDF
∴ΔABC∼ΔDEF