Show that (x+4),(x−3) and (x−7) are factors of x3−6x2−19x+84
Factor theorem:
If P(x) ia a polynomial, x−a is a factor of P(x) then P(a)=0 is remainder.
Let f(x)=x3−6x2−19x+84 be the given polynomial.
Lets check the, (x+4),(x−3) and (x−7) are factors or not.
(i) (x+4)
Put x+4=0
⇒x=−4
f(x)=x3−6x2−19x+84
⇒f(−4)=(−4)3−6(−4)2−19(−4)+84
⇒f(−4)=−64−6(16)+76+84
⇒f(−4)=−64−96+76+84
⇒f(−4)=160−160
⇒f(−4)=0
By the factor theorem, (x+4) is a factor of f(x)=x3−6x2−19x+84.
(ii) (x−3)
Put x−3=0
⇒x=3
f(x)=x3−6x2−19x+84
⇒f(3)=(3)3−6(3)2−19(3)+84
⇒f(3)=27−6(9)−57+84
⇒f(3)=27−54−57+84
⇒f(3)=111−111
⇒f(3)=0
By the factor theorem, (x−3) is a factor of f(x)=x3−6x2−19x+84.
(iii) (x−7)
Put x−7=0
⇒x=7
f(x)=x3−6x2−19x+84.
⇒f(7)=(7)3−6(7)2−19(7)+84
⇒f(7)=343−6(49)−133+84
⇒f(7)=343−294−133+84
⇒f(7)=427−427
⇒f(7)=0
By the factor theorem, (x−7) is a factor of f(x)=x3−6x2−19x+84.