wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Show that y=emsin1x is a solution of the differential equation (1x2)y2xy1m2y=0.

Open in App
Solution

y=emsin1x
y=msin1x emsin1x 11x2
y′′=(1x2)(m2emsin1x1x2)memsin1(12)(1x2)1/2(2x)(1x2)2
=m2emsin1x+mxesin1x1x21x2
=m2y+ny1x2
(1x2)y′′=m2y+xy
(1x2)y′′m2yxy=0

1159097_1140221_ans_e86d8739746a483e894ef3f729abb068.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon