Given:
y=log(1+x)−2x2+x
Differentiating w.r.t x,
dydx=11+x−2(2+x)−2x(1)(2+x)2
⇒dydx=11+x−4+2x−2x(2+x)2
⇒dydx=11+x−4(2+x)2
⇒dydx=(x+2)2−4(x+1)(x+1)(x+2)2
⇒dydx=x2+4x+4−4x−4(x+1)(x+2)2
⇒dydx=x2(x+1)(x+2)2
For x>−1
⇒dydx>0
Hence, the function is an increasing function for x>−1.