The correct option is B 4b−3c2b
∵Sides are in A.P and a<min{b,c}
CaseI:If min{b,c}=b
⇒a,b,c are in A.P.
⇒2b=a+c
⇒a=2b−c
∴cosA=b2+c2−a22bc
=b2+c2−(2b−c)22bc
=b2+c2−4b2−c2+4bc2bc
=−3b2+4bc2bc
=b(4c−3b)2bc=4c−3b2c
CaseII:If min{b,c}=c
⇒2c=a+b
⇒a=2c−b
∴cosA=b2+c2−a22bc
=b2+c2−(2c−b)22bc
=b2+c2−(4c2+b2−4bc)22bc
=−3c2+4bc2bc
=c(4b−3c)2bc
=(4b−3c)2b