The correct option is D 4b−3c2b
Sides of triangle ABC in A.P. and a<min{b,c}
Case I: If min{b,c}=b
Then a,b,c are in A.P.
2b=a+c
∴cosA=b2+c2−a22bc
cosA=b2+c2−(2b−c)22bc
cosA=4bc−3b22bc=4c−3b2c
Case II: If min{b,c}=c
Then a,c,b are in A.P.
2c=a+b
∴cosA=b2+c2−a22bc
cosA=b2+c2−(2c−b)22bc
cosA=4bc−3c22bc=4b−3c2b