∑k=12n+1(-1)k-1(k)2equals
(n-1)(2n-1)
(n+1)(2n+1)
(n+1)(2n-1)
(n-1)(2n+1)
Explanation for the correct answer:
Simplifying the given expression:
⇒∑k=12n+1(-1)k-1(k)2⇒12-22+32-42+…(2n)2+(2n+1)2[∵(-1)k-1(k)2=12-22+32-42+…(2n)2+(2n+1)2]⇒12+32+52+...+(2n+1)2-22+42+62+...+(2n)2⇒12+32+52+...+(2n+1)2-222+42+62+...+(2n)2⇒∑(2n+1)2-2(22)[1+22+33+…n2]…(1)
We know ∑n2=n(n+1)(2n+1)6
Equation (1) becomes,
= ⇒(2n+1)(2n+1+1)(2(2n+1)+1)-8n(n+1)(2n+1)6⇒(2n+1)(2n+1)2(4n+3)-8n6⇒(n+1)(2n+1)8n+6-8n6⇒(n+1)(2n+1)
Thus, ∑k=12n+1(-1)k-1(k)2=(n+1)(2n+1)
Hence, option (B) is correct.