Let us epxand the given expression:
(7a−6b+5c)2+(7a+6b−5c)2=
[(7a)2+(−6b)2+(5c)2+{2×(7a)×(−6b)}+{2×(−6b)×5c}+{2×(7a)×(5c)}]+[(7a)2+(6b)2+(−5c)2+{2×(7a)×(6b)}+{2×(6b)×(−5c)}+{2×(7a)×(−5c)}]
by using the formula,
(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
=[49a2+36b2+25c2+{−84ab}+{−60bc}+{70ac}+[49a2+36b2+25c2+{84ab}+{−60bc}+{−70ac}]
=[49a2+36b2+25c2−84ab−60bc+70ac]+[49a2+36b2+25c2+84ab−60bc−70ac]
=[49a2+36b2+25c2−84ab−60bc+70ac+49a2+36b2+25c2+84ab−60bc−70ac]
=98a2+72b2+50c2−120bc
∴ (7a−6b+5c)2+(7a+6b−5c)2=98a2+72b2+50c2−120bc