Given (64)−16×(216)−13×(81)14(512)−13×(16)14×(9)−12
=(26)−16×(63)−13×(34)14(83)−13×(24)14×(32)−12
=(2)−16×6×(6)−13×3×(3)14×4(8)−13×3×(2)14×4×(3)−12×2 [since, (am)n=am×n]
=2−1×(2×3)−1×38−1×2×3−1
=(2)−1−1×(3)−1+1(23)−1×2×3−1 [since, am×an=am+n]
=2−22−3×2×3−1 [Since, a−m=1am and a0=1]
=32−3+1+2
=3(20)
=3