1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Trigonometric Identities
Question 11 S...
Question
Question 11
Simplify:
(
1
+
t
a
n
2
θ
)
(
1
−
s
i
n
θ
)
(
1
+
s
i
n
θ
)
Open in App
Solution
(
1
+
t
a
n
2
θ
)
(
1
−
s
i
n
θ
)
(
1
+
s
i
n
θ
)
=
(
1
+
t
a
n
2
θ
)
(
1
−
s
i
n
2
θ
)
[
∵
(
a
−
b
)
(
a
+
b
)
=
a
2
−
b
2
]
=
s
e
c
2
θ
.
c
o
s
2
θ
[
∵
1
+
t
a
n
2
θ
=
s
e
c
2
θ
a
n
d
c
o
s
2
θ
+
s
i
n
2
θ
=
1
]
=
1
c
o
s
2
θ
.
c
o
s
2
θ
[
∵
s
e
c
θ
=
1
c
o
s
θ
]
=
1
(
A
n
s
.
)
Suggest Corrections
32
Similar questions
Q.
Simplify
(
1
+
tan
2
θ
)
(
1
−
sin
θ
)
(
1
+
sin
θ
)
Q.
(
1
+
tan
2
θ
)
(
1
−
sin
θ
)
(
1
+
sin
θ
)
=
Q.
Solve:
(
1
+
tan
2
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
Q.
Prove that
(
1
+
tan
2
θ
)
(
1
+
sin
θ
)
(
1
−
sin
θ
)
=
1
Q.
Prove the following trigonometric identities.
(1 + tan
2
θ) (1 − sinθ) (1 + sinθ) = 1