Simplify:
√13−√11√13+√11+√13+√11√13−√11
Given:
√13−√11√13+√11+√13+√11√13−√11
=(√13−√11)2+(√13+√11)2(√13+√11)(√13−√11)
Since, (a−b)2=a2−2ab+b2
(a+b)2=a2+2ab+b2
(a+b)(a−b)=a2−b2
⇒(√13−√11)2+(√13+√11)2(√13+√11)(√13−√11)
=13+11−2√123+13+11+2√123(√13)2−(√11)2
=4813−11
=482
=24
∴√13−√11√13+√11+√13+√11√13−√11=24