Let us first take (2p+3q−4r)2
(2p+3q−4r)2={2p+3q+(−4r)}2
Using, (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
=(2p)2+(3q)2+(−4r)2+2(2p)(3q)+2(3q)(−4r)+2(−4r)(2p)
=4p2+9q2+16r2+12pq−24qr−16rp ...(i)
Now, let us solve,
(2p−3q−4r)2={2p+(−3q)+(−4r)}2
Using, (a+b+c)2=a2+b2+c2+2ab+2bc+2ac
=(2p)2+(−3q)2+(−4r)2+2(2p)(−3q)+2(−3q)(−4r)+2(−4r)(2p)
=4p2+9q2+16r2−12pq+24qr−16rp .....(ii)
Adding the corresponding sides of (i)& (ii) we get,
(2p+3q−4r)2+(2p−3q−4r)2
=4p2+9q2+16r2+12pq−24qr−16rp+4p2+9q2+16r2−12pq+24qr−16rp
=8p2+18q2+32r2−32rp.
=2(4p2+9q2+16r2−16rp).