Simplify :3a−2b−ab−(a−b+ab)+3ab+b−a
We have,
3a−2b−ab−(a−b+ab)+3ab+b−a
=3a−2b−ab−a+b−ab+3ab+b−a
=3a−a−a−2b+b+b−ab−ab+3ab
=3a−2a−2b+2b−2ab+3ab
=a+ab
=a(1+b).
Question 1 (iv)
Simplify combining like terms:
3a - 2b - ab - (a - b + ab) + 3ab + b - a
(i) 21b − 32 + 7b − 20b
(ii) − z2 + 13z2 − 5z + 7z3 − 15z
(iii) p − (p − q) − q − (q − p)
(iv) 3a − 2b − ab − (a − b + ab) + 3ab + b − a
(v) 5x2y − 5x2 + 3y x2 − 3y2 + x2 − y2 + 8xy2 −3y2
(vi) (3 y2 + 5y − 4) − (8y − y2 − 4)
State True or False:
On subtracting a2+ab+b2 from 4a2−3ab+2b2, the answer is 3a2−4ab+b2.