Simplify:
[(5z−2)2+40z]÷(5z+2)
5z+2
To simplify :
[(5z−2)2+40z]÷(5z+2)
Using the identity,
a2−2ab+b2=(a−b)2 ,
[(5z−2)2+40z]
=[25z2−20z+4+40z]
=[25z2+20z+4]
On factorizing,
25z2+20z+4,
we get,
25z2+20z+4
=(5z)2+2×(5z)×2+22
On applying the identity, a2+2ab+b2=(a+b)2,
we get ,
25z2+20z+4=(5z+2)2
So,
[((5z−2)2+40z)(5z+2)]=(5z+2)2(5z+2)=5z+2