Simplify 7 log(3215)+5 log(2524)+3 log(81160)
5 log2
Given expression:
7 log(3215)+5 log(2524)+3 log(81160)
=7 log(253×5)+5 log(523×23)+3 log(345×25)
=7[log(25)−log(3×5)]+5[log(52)−log(3×23)]+3[log(34)−log(5×25)]
=7(5 log2−log3−log5)+5(2 log5−log3−3 log2)+3(4 log3−log5−5 log2)
=35 log2−7 log3−7 log5+10 log5−5 log3−15 log2+12 log3−3 log5−15 log2
=35 log2−15 log2−15 log2−7 log(3)−5 log(3)+12 log(3)−7 log(5)+10 log(5)−3 log(5)
=5 log2